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The mean-free-path approach to kinetic theory, initiated by Maxwell, and largely 
abandoned after the Chapman-Enskog success with Boltzmann’s equation, is revised 
and considerably extended in order to find expressions for the heat flux vector q and 
pressure tensor p, valid (it is hoped) for all Knudsen numbers, K .  These expressions 
(equations (2.24) and (2.26)) are integrals taken over the whole volume of the fluid 
plus surface integrals taken over the solid boundaries. The one phenomenological 
element is the mean free path A, which takes different values according to whether it 
is mass, momentum or energy that is transported by the molecules. The need for such 
an approach is evidenced by the existence of critical values of K ,  above which the 
Chapman-Enskog expansion in powers of K, truncated after a finite number of 
terms, fails to yield a solution. For example with the Burnett equations, which are 
correct to O(K2) ,  the critical K in a shock wave is only 0.2 based upon the upstream A. 

As a first check on our general theory, we have found the O(K2) expansions for q 
and p from integral equations and found, a t  least for a Maxwellian gas, almost exact 
agreement with all 19 coefficients (8 are identically zero) appearing in the second- 
order terms of Burnett’s equations. In  a later paper the theory will be tested a t  high 
K numbers by applying it to the propagation of very high frequency waves, for which 
experimental results and alternative theories are available. 

1. Introduction 
1.1.  Methods i n  kinetic theory 

Three distinct methods have been used in the kinetic theory of gases to determine 
laws for the transport of fluid momentum and heat. These are (i) the general analytical 
approach that starts from a kinetic equation for the velocity distribution function 
f, (ii) the use of Maxwell’s equations of transfer with special molecules such that pairs 
interacting a distance r apart repel with a force cc r+, v = 5 ,  and (iii) the older free- 
path treatment of hard-sphere molecules (v = 00) based directly on the actual physical 
mechanism of transport. 

As Maxwell discovered, with the ‘soft ’, v = 5 molecules, it  is unnecessary to evaluate 
f in order to find values for the coefficients of viscosity p and thermal conductivity 
K ,  and, despite the inaccurate linear dependence of p and K on the temperature T 
given by this model, it does yield the relation K = &,p, which the general theory of 
Chapman and Enskog reveals to be accurate to within 1% over the range 5 < v ,< 00. 

Mean-free-path theories also do not require a kinetic equation for f, and while they 
have the additional merit of being physically lucid, in their simplest form they give 
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inaccurate values for p and K .  Let C be the mean molecular speed, A, the usual mean 
free path and p the fluid density, then mean-free-path arguments yield 

p = a,p5A0, K = a2c,,p, 
with the constants a, and a2 having the values 6 and 1 in the simplest version. It is 
possible, however, to improve the theory and to obtain values of a, and a2 close to 
their true values of N 3 and N #. 

Thus the position is that we have two special theories with certain defects, but 
which do not require us to solve Boltzmann’s nonlinear equation for f, and a general 
theory tha,t depends on our being able to  solve this equation. No exact solutions of 
Boltzmann’s equation suitable for the general theory have been found, so an expansion 
procedure is necessary, a point we shall return to shortly. While the general theory 
holds for any force law between molecules, it  is unfortunately beyond the capacity of 
present day molecular physics to determine the force law for given molecules from 
first principles, so adjustable parameters like K and v in the power law Kr+’ must be 
found from experimental values of p and K .  And as K and v are found to depend weakly 
on the temperature, the theory is close to degenerating into mere curve fitting. From 
a practical viewpoint one may as well accept p itself as being the empirical element, 
whereupon the only advance provided by kinetic energy over phenomenological 
fluid dynamics would reside in the relation K = &,p. 

1.2. The Chapman-Enskog expansion 
The Chapman-Enskog method (Chapman & Cowling 1970) of solving Boltzmann’s 
equation starts by expanding the velocity distribution function in the power series 

f = f o ( l + K ~ 1 + K 2 ~ 2 + . . . ) ,  (1.1) 

where f,, is the equilibrium (Maxwellian) distribution function and K = h,/L is the 
Knudsen number, L being the scale-length for changes in macroscopic variables. 
The Newtonian formula for the pressure tensor p and the Fourier law for the heat 
flux vector q are obtained by ignoring terms O(K2)  in ( 1 . 1 )  (i.e. by assuming K < 1, 
and hoping that q52, & . . . remain bounded), while Burnett’s (1935) nonlinear trans- 
port equations, and similar formulae due to Grad (1949), include terms O(K2)  but 
ignore higher-order terms. The theory is not as instructive about the underlying 
physics as are free-path arguments, especially when terms O ( K 2 )  and higher are 
pursued, for the analysis becomes quite complicated. In  fact according to Ferziger & 
Kaper (1972) one reason that Burnett’s equations have not enjoyed much popularity 
is that there exists no heuristic, physically transparent derivation for them. 

But there is a more serious objection to the Burnett equations, namely their failure 
in strong shock waves or in very high frequency sound waves, at  apparently quite 
modest values for K .  For example, at Mach numbers over 1-65 no solution to the 
equations can be found; with K based on the upstream value of A,, this failure occurs 
for K > 0.2. While extension of the series (1 .1)  to higher powers in K improves the 
situation by increasing the critical Mach number (Elliot & Baganoff 1974), the im- 
provement is small compared with the labour involved. As remarked by Chapman & 
Cowling (1970, p. 292)’ when K is not small, a new method of approximating to f 
becomes necessary, but short of resorting to numerical procedures for approximating 
solutions to Boltzmann’s equation (Bird 1976), none has been found. 
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The only avenue open to the domain K > 1 appears to be via a somewhat generalized 
mean-free-path approach, which is to admit the possibility of some errors in numerical 
coefficients in exchange for a fluid theory covering the whole of the K range. Even a 
mean-free-path derivation of Burnett’s equation would be instructive, and perhaps 
also provide an explanation of why they appear to be subject to much the same 
constraint (K  < 1) as the Navier-Stokes equations. The object of this paper is the 
development of such a theory. We shall test its accuracy by deriving Burnett’s 
equations on the one hand, and (in a later paper) deducing known results for K 9 1 
on the other hand. 

1.3. Generalized free-path theory 
The classical mean-free-path calculations of p and K for the linear transport equations, 
associated with the names Maxwell, Clausius, Boltzmann, Meyer and Jeans, are in 
error by numerical factors between 1 and 9. However, the reasons for these errors are 
understood, being explained by the ‘ persistence of (molecular) velocities ’ after 
collisions and by the higher rate of convection of the molecular kinetic energy by 
the faster molecules. We shall incorporate these effects into our theory by adopting 
different mean free paths for the transport of momentum (A,) and energy (A,), relating 
these lengths to the usual or ‘particle ’ mean free path A, by A, = a, A,, A, = a2 A,, 
where a,, a2 are numbers that we could assign either with the help of the accepted 
values of p and K ,  or by quite separate arguments independent of the solution of 
Boltzmann’s equation. 

Even with the errors in p and K removed in the manner described, their initial 
appearance suggests that any effort t,o extend mean-free-path theory to a range of K 
values could be beset by even more serious discrepancies. Certainly with the generalized 
mean-free-path theory developed below, we had no expectation of getting agreement 
with all the additional nineteen numerical coefficients appearing in the Burnett 
equations - six terms in p, eight vanishing terms in the trace of p and five terms in q.  
It was merely our hope to get values for these second-order terms sufficiently close 
to the Burnett values to give credibility to our general expressions for p and q. In  fact 
we find that, at  least for Maxwellian molecules, the theory gives exact values for all but 
three of the Burnett terms, with errors of less than 1 % in two coefficients and about 
7 yo in the third term. We take this to be strong support for our model. We have thus 
filled the gap mentioned by Ferziger and Kaper of providing a heuristic treatment of 
Burnett’s equations, although we hope the reader can agree that it is better than merely 
‘heuristic ), even where it is not entirely deductive. 

Burnett’s theory holds for K values rather less than unity. In a later paper we shall 
test our model o‘ver a wide range of K values by studying the propagation of sound 
waves of wavelength A, such that K = A,/A, varies from near zero to lo2 or more. The 
results so far obtained for these high frequency waves reveal good agreement with 
experiment, encouraging us to believe that our generalized fluid dynamics is accurate 
over the whole Knudsen number range. 

It may be objected that our theory can apply only to the hard-sphere molecules for 
which the concept of free path is unambiguous. But we shall not accept this constraint, 
following instead the usual device of using the hard-sphere relation between ,u and 
A, to define an effective A, for ‘soft’ molecules. The mean free path that appears in our 
theory may be interpreted as being a phenomenological parameter that assumes the 
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usual precise free-path meaning only for hard-sphere molecules, although in setting 
up the model we find it convenient to use the free-path interpretation to illustrate the 
steps. The real justification of the model lies not so much with its mechanistic descrip- 
tion (which we hope is convincing) but with the agreement of its consequences Gth  
known results, especially at high K numbers. 

1.4. Generalized Jluid dynamics 

The principal contributions of the paper are expressions for p and q as integrals 
over the whole of the fluid volume. Apart from the phenomenological parameters 
hi = hi@, T), i = 1, 2, these integrals involve the velocity field v(r, t )  of the fluid, the 
density p( r, t )  and the temperature T(r, t )  at all points in the flow, and hence, taken 
with the three conservation equations of fluid dynamics, they generalize the Navier- 
Stokes equations into a set of integro-differential equations for V, p and T. Thus we 
have developed a non-local theory of fluid dynamics which should find application 
in rarefied gas dynamics, astrophysical gas dynamics and plasma physics. Contribu- 
tions to the integrals for p and q from solid boundaries will depend on whether one 
supposes molecular reflexion to be diffuse or specular, so this b&e noire of standard 
kinetic energy remains with us. 

The theory is developed initially for a single molecular speed and then generalized 
by averaging over a Maxwellian distribution of speeds. Our equations are thus non- 
local in real space and averaged over the equilibrium distribution in velocity space, in 
contrast to ordinary kinetic theory, which is local in real space and non-local in 
velocity space. 

Finally the underlying motivation for our work should be mentioned. With 
ordinary gases, unless boundary conditions force extremely sudden changes to occur 
within the flow, e.g. as in sound waves forced at  very high frequencies or in strong 
shock waves, the usual linear laws for p and q are adequate. However the situation is 
different in plasma physics. Transition regions are often dominated by electric fields 
and currents and can thus be much shorter than mean free paths, giving K 9 1. If 
a fluid description is to be attempted for such a plasma, then non-local expressions 
for p and q are certainly required. Of course kinetic equations for f could be used, but 
these are much more complicated to solve than the fluid equations and, where plasma 
turbulence exists, their correct form remains a topic for conjecture. The mean-free- 
path approach, depending as it does directly on a physical mechanism, rather than 
on an uncertain mathematical equation for f, has much in its favour, despite its 
requiring a phenomenological element in the mean free path. 

For an entirely different form of generalized fluid dynamics the reader is referred to 
a paper by Bixon, Dorfman & Mo (1971). Their work is based on the linearized Boltz- 
mann equation and leads to linear hydrodynamic equations, but is nevertheless 
somewhat complicated analytically. Linearization is a severe constraint, cutting out 
for example as many as seven of the eleven Burnett terms and disqualifying the theory 
for shock wave studies. 
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2. Themodel 
2.1.  Molecular velocities 

We shall be considering the motion of a typical molecule S that experiences a collision 
in a volume element dv’ at the point P’( r’, t’)  and subsequently passes through a unit 
surface En a t  Q(r, t ) ,  which we shall call the ‘target’. Let v‘ = v(r’, t ’ )  and v = v(r, t )  
denote the fluid velocities a t  P’ and Q, then, imposing the velocity - v on the origin 
of co-ordinates 0, we have a frame in which Q is stationary. In  this frame a fluid 
particle? P will have a velocity (v’-v) when it passes through P‘. Let S(r5, t,) be 
the position of X after it has moved a distance s along its path relative to P and let 
s = R when S arrives at  the target Q. If P has reached P a t  the instant S reaches Q, 
the vector PQ can be written as RG, where k is unit vector. Thus p is the point (F, t )  
F = r - R&, as shown in figure 1, and, if v, is the velocity of P in the defined frame, 

4 

F= r ’+ lv ,ds  (vp = v‘-v at t = t’). (2.1) 

A 

During the collision in dv‘ S will acquire a thermal velocity component, say cR, 
along the unit vector fi.  Later the speed c will be averaged over a Maxwellian dis- 
tribution. In  order to separate macroscopic effects in c from the entirely random 
effects, we shall find it convenient to  introduce the ratio w ,  and speeds C,, C ,  and C, 
defined by 

I c = w(2kT/m)*  = w8,C0 = wSlC, = wS2C2, - 
C, = C = (8kT/nm)* ,  8, = ~ J T ;  Cl = (c2)* = ( 3 k T / m ) & ,  6, = (%)a; ( 2 . 2 )  

c, = (7)i = (#)iC,, 8, = (&)a, 
where m is the molecular mass, Ic is Boltzmann’s constant and T is the temperature. 
The averages Ci, i = 0 ,1 ,2 ,  which, as we shall see later, arise naturally in the linear 
transport theory, depend on (r, t )  via the temperature, whereas w is a random variable 
independent of (r, t )  distributed as a Maxwellian: 

(2 .3 )  f ( w )  dw = (4/4n) w2exp ( - w2)  dw, 0 < w < CO. 

The factors Si in (2 .2 )  result from the averages 
- - - - 
w = 2/&, w3 = 4/4n, w2 = Q, 0 4  = 2 2 .  4 (2.4) 

Let F be the body force on the fluid per unit mass, 9 be the fluid stress density and 

(2.51 

The force F acts continuously on the individual molecules, whereas the fluid stress 
density 9, although continuous in the fluid, must act impulsively on individual 
molecules at  each collision. Thus the molecule X has the equation of motion f5 = F5, the 

a the fluid acceleration, then 

dv - a = 2F+ F. 1 
P dt - F = - - V . p ,  -- 

t By a ‘fluid particle ’ P here and below we mean a region infinitesimal on a macroscopic scale, 
whose boundary moves with the local fluid velocity, and whose maw is therefore constant. In 
classical fluid dynamics such regions are taken to be much larger across than a mean free path, 
but here we merely require P to be sufficiently large for the various macroscopic averages to 
be smooth functions of r and t .  
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-" 
FIGURE 1. Particle trajectories: P ,  fluid particle molecular source; &, 

molecular target ; S ,  typical molecule. 

subscripts denoting values on the trajectory a t  the point (rs, ts), and .F contributes 
only to the initial velocity of S. 

However not all components of p are transmitted in a collision between molecules 
unless, as we shall shortly explain, one of them is stationary in the frame in which p 
is measured. It is convenient to split p thus: 

p =p1 + x ,  (2.6) 

where 1 is the unit tensor, p is the thermodynamic pressure and x is the viscous stress 
tensor, i.e. the stress due to differential fluid motions. At a collision sending S along 
R, the non-random component of force between the molecules will lie along 8. Now 
if the colliding molecules, S and S', approach the collision point P' with stationary 
centre of mass and identical speeds C,, the appropriate average speed for the trans- 
mission of momentum, as will be established later, then S and S', coming from previous 
collisions symmetrically disposed about P', will transport cancelling effects from x ,  
whereas if S' is initially stationary (or S is finally stationary) such cancellation will 
not occur. Let p* be that part of the pressure tensor effective in a collision, then the 
point just made is satisfied if 

h A  

p* = ( p - d , R R :  x ) I  + x ,  

A h  A h  A h  

for, when S has the speed C,, p*: RR = p, and, when S is stationary, p* : KR = p : RK. 
Accordingly it is our hypothesis that the force acting on S due to fluid stress is not 9, 
but - Q . p* /p ,  i.e. 

1 
P 

9-* = ~ + o S , - V x :  i iR. (2.7) 

The initial velocity imparted to S will depend on what property it is assumed X 
is transporting. I n  (2.2) the subscripts i on C, will be shown below to describe average 
speeds for particle (i = 0 ) ,  momentum (i = 1) and energy (i = 2) transport. With the 
same convention, we shall write Fi (i = 0, 1, 2) for the three time-intervals associated 
with S*. In  $2.4 it will be shown that is almost the same as the corresponding 
mean free time between collisions. Of course the impulsive velocity YiF* is really 
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due to a much larger force acting over a smaller time, our expression representing the 
integrated effect. 

At P’, in a frame in which Q is stationary, S starts off towards Q with the initial 
velocity 

A 

U; = ~ & C ; R + Y ; ~ ~ + V ’ - V ,  i = 0, 1,  2 ,  (2.8) 

where the dash denotes values a t  (r’, t ’ ) .  At (rs, t,) on its trajectory S will have the 
velocity 

fSi = w S i C ; R + F ~ 9 ~ + v ’ - v +  (2.9) 

and in particular the velocity of S as it passes through the target at  Q ( r ,  t )  is 

(2.10) It: h 

ui = wJiC;R+Y;9; +v’-V+ Fdt.  

Let T = t-t’ denote the transit time between P‘ and Q, then by (2.1) and (2.9) 

and R = Ir-Fl  = & . ( r - F ) ,  I 
the subscript u denoting a value of s, and ap being the acceleration of the fluid element 
P. Of course T and R will depend on w and i. We shall require (2.11) when in § 3 we 
expand in powers of K, the average transit time being proportional to K .  

2.2. The transit probability 
We require an expression for the probability that a molecule colliding in the volume 
element dv’ at P’ subsequently passes through the target at Q. There are three distinct 
mean free paths invoved, depending on whether it is particle (A,), momentum ( A , )  or 
energy (A,) that our typical molecule is required to transport from P’ to Q .  And corre- 
pondingly there are three distinct probabilities, say gi, i = 0, 1, 2. The values of 
hi at P‘, s and Q will be denoted by A;, hsi and hi respectively. In  general hi will depend 
on p, T and w .  

Provided k . u > 0 and no solid boundaries intervene, the molecule S can overtake 
the fluid element Q and, granted this, the probability that any molecule leaving dv’ 
along R will reach the target before experiencing a collision is 

where ds is an element of distance measured along the trajectory. 
Let n’ be the molecular number density a t  P’, then the coilision rate in dv’ is 

(n’Ci/hi) dv’ and, assuming that the angular distribution of the collided molecules is 
isotropic (see 2.3), we shall have a fraction n. R/(477Rz) of these leaving P’ in the 
correct direction to cross the target nX at Q. (Because of the relative motion of P ,  
and Q, it is the ‘final’ distance R = Ir-FI rather than the ‘initial’ distance Ir- r‘l 
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that is required in calculating the solid angle subtended by the target; to see this, 
redraw figure 1, with P stationary and Q moving.) 

Combining the above results, we conclude that n. fin'Ci 8, dv' molecules experience 
a collision each second in the volume element dv' and subsequently pass through the 
target, where Pi are the probability densities 

Pi = , i = 0, 1,  2. 4vR2 A; 
(2.12) 

The volume element dis a t  P can be expressed 

dis = d a  R2dR, (2.13) 

where dw is the element of solid angle subtended a t  Q by dis. And since (differentiating 
the lower limit) 

it follows that 

J BidF= 1, 
V 

(2.14) 

where the integral is over the fluid volume V ,  assumed here to extend over the whole 
of physical space. 

2.3. The various mean free paths 
As remarked in 8 I .3,' persistence of velocity ' plays an important role in molecular trans- 
port. Its effect is to increase the distance between the source from which the molecules 
transport momentum and energy and the target Q .  Thus, referring to figure 1, if we 
take P' to be not the position a t  which the molecule S had its last collision, but the 
point from which S is effectively transporting the local fluid momentum, then it will 
be displaced some distance further away from Q .  Equivalently we can replace the 
mean free path A, for particle transport by a larger mean free path A, for momentum 
transport. With energy transport velocity persistence is even more effective in stretch- 
ing the mean free path, yielding a length A, substantially greater than A,. With these 
transport processes we have different mean free times 7i defined by 

hi = cri = 08. a c. a t  7 .  = w8, hi (hi z ci 7J, (2.15) 

where hi are the average mean free paths introduced in 3 1.  
It is important for our model that hi and 7i be independent of macroscopic gradients, 

i.e. have values a t  a given point determined only by the temperature and density at  
that point. Thus the persistence of velocity introduced above is defined as in the text 
by Jeans (1921) or Chapman & Cowling (1970), so the lengthening of the mean free 
paths will remove only that anisotropy a t  P' due to persistence under uniform con- 
ditions. Anisotropy in the molecular velocity due to gradients is represented by the 
termY;P; appearing in (2.10), and a basic assumption in this paper is that there are 
no other similar terms. Certainly, as will be demonstrated in 5 3 , 3 7 i F k  is correct to 
O(K2) .  

Mass transport is to be distinguished from particle transport. By A, we mean the 
average distance that an identifiable molecule moves between collisions, i.e. the usual 
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Speed Mean-free path Free time 

Particles Go = a A, = (27rmoa)4 To = &/E 
Momentum c, = (%)*a A, = (6/n)4A0 71 = ( 4 / 4  7 0  

Energy c, = c:,t c, A, = +(:)*A, r2 = $, - Mass C Q) a3 

TABLE 1. Maxwellian molecules. 

mean-free path. On the other hand the mean-free path for mass transport is infinite 
because at each collision between identical particles there is no reduction in the mass 
being transported in any direction, many particles becoming involved in this trans- 
port in a cascade process. This fact explains a paradox occurring in Meyer’s mean-free- 
path theory (Jeans 1921), namely that his theory is (almost) correct only if collisions 
between like particles are ignored, which is equivalent to giving such collisions an 
infinite mean free path. 

For Maxwellian molecules we shall adopt the values for Ci, hi and ri set out in 
table 1.  In  the second column (T is the effective molecular diameter, which, for the 
molecular force law KY-’ and a relative velocity v, between colliding molecules, is 
easily shown to satisfy 

(2.16) 

which is constant for v = 5 (Maxwellian molecules). When v, results from collisions 
between molecules in a Maxwellian velocity distribution v, = J2 i? cc TB, so 

nrocc T*-l (d = 1 for Maxwellian molecules), (2.17) 

and we arrive a t  the value of A, given in table 1.  

C ,  and C, arise naturally on taking averages over 
In  the first column the speeds are those defined in (2.2); as will be shownin$§ 3.4-3.6, 

pc = gpc271, K, = iPC472/T, (2.18) 

where pe,  K, are the contributions to p and K from molecules of speed c and for Max- 
wellian molecules pr,, pr2 are independent of c. Notice that (2.18) yields the averages 

and 
(2.19) 

The value 6 = + has a high accuracy for all molecular force laws, so if for the general 
case average times TI, 5, are defined by K1 = C: TI, = Ci T2,  it  is necessary that 

It may be thought that table 1 can be established only by adopting the known results 
of classical kinetic theory but this is not so. Jeans (1921) showed that for momentum 

- r2 = $T1. 

20 FLY 93 
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transport with hard molecules persistence of velocity lengthens Maxwell's mean free 
path by a factor 1.382 ( z  (6/7r)*), but he failed with similar arguments to prove that 
8 should be Q, obtaining instead a value near 9 .  In  0 3.5 we shall establish the correct 
value of 8 using only mean-free-path arguments, so table 1 can be construc6d 
independently of the Chapman-Enskog theory. 

2.4. The stress transfer time 

In  (2.10) for the molecular velocity we introduce the impulsive velocity 9-:9; 
without giving a value for the 'stress transfer time' 9;. That Fi is approximately 
equal to the free time ri defined in 3 2.3 follows by comparing the fluid and molecular 
motions after a time 6t 9 ri. For in this period the change in the mean velocity of a 
molecule is (&/Ti) Yi9*, whereas, for the fluid element in which it moves, the velocity 
change is 6 t q  and for these motions to be in accord it is necessary that the non- 
dimensional number pi defined in 

be approximately unity. From the theory for pi given below, we find that it contributes 
only about 10 yo to one of the nonlinear terms in Burnett's equation, so it represents 
a comparatively unimportant effect. On the other hand the correction of 9 to 9* 
given in (2.7) is quite significant, reducing two linear terms in Burnett's equation 
by one third. 

That /Ii + 1 is due to the anisotropy created at  P' by molecules arriving at P' 
with different speeds depending on the locations of their previous collisions. These 
collisions will be distributed, on average, over a sphere I? of radius A' centred at P', 
so that temperature and fluid velocity gradients will result in different initial velocities 
for the molecules converging on P'. Ideally we should trace the molecules back in 
their trajectories over several previous collisions, but in a fluid model such details 
would not be justified. 

The impulsive velocity Yi9* is due to c$lisions between our representative 
molecule S - which subsequently moves along R and molecules coming from various 
points on I?. Suppose that x" is a typical molecule colliding in dv' with S, and that it 
comes from P" on I', then because S must have a final velocity along R, the points P" 
will not be found uniformly distributed over r. In fact if S were stationary at  P' 
before the collision, P" would have to lie on the hemisphere y of F lying furthest 
from the target Q ,  i.e. with R as normal to its flat surface, in order that x" could sub- 
sequently impel S along k. And in this special case P" would be distributed uniformly 
over y. Now P' is a fluid particle, i.e. relative to P' the molecules in the element 
dv' have an average (vectorial) velocity of zero. So to simplify our determination of 
p' it seems reasonable to assume that S is stationary in dv' prior to collision, so that 
x" comes from points P" uniformly distributed over y.  

A molecule x" arriving a t  P' from a point P" on y will have a velocity ii; given by a 
formula like (2.10), namely 

Ti = piri 

then, if U;  denotes the average of IGil takenover y ,  on average #will have the velocity 
Ui  R, and will experience a head-on collision with S. Now suppose that the 'macro- 
scopic stress' between 8 and S were to be transferred uniformly during the free time 
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ri, then the average work done on A!? in this time would be U;  r; IR . S k  I, while that 
done on S would be C; IR. (9-iFi)l. Equating these we get 

A 

9-; = p;r;, p; E u;/c;. (2.20) 

Admittedly, since s" has the speed U; and S the speed Ci, they could not remain in 
contact during our hypothetical drawn-out encounter ; our model merely secures the 
overall requirement that work is transferred without loss. 

2.5. Conservation of mass 

In  $ 2.2 we found that each second n . Rn'C; dv' molecules with relative velocity 
w experience a collision in dv' a t  P' and subsequently pass through the target. The 
rate at  which they cross the target is obtained by replacing the initial velocity RC; 
by the arrival velocity ui. Hence the number flux of molecules of mass m (and relative 
velocity w )  through the target is 

h 

(2.21) 1 
m 

dN; = -p'n.ui  Pidv ' ,  i = 0,1,2, 

where p' = mn' is the fluid density. 
It is tempting to assume that mdN, is the mass flux of such molecules through the 

target, and to suppose that its double integral over the Maxwellian for w and over the 
whole fluid must vanish. But this is to confuse mass transport with particle transport, 
which, as mentioned in $2.3, have very different mean free paths. For mass transport 
the mean free path extends back from the target Q to the fluid boundary, and the 
integral just mentioned would reduce to a surface integral. 

There is however another form of mass conservation that plays an essential role 
in our theory, namely that the mass of the fluid particle P is constant (see figure 1). 
This enables us to write 

p(r', t ' )  dv(r ' ,  t ' )  = p'dv' = pdrj = p(E, t )  dv(E, t ) ,  (2.22) 

so that in the integrals for p and q to be given below, we are free to replace p'dv' by 
pd5 .  Theimportlance of this move is that in (2.13) we have a simple expression for the 
volume element d?, independent of the molecule's flight time, which is not true ofdv'. 

2.6. Momentum and energy Jlux 
By equations (2.7), (2.10) and (2.20) 

These velocities ui and the probabilities Pi defined in (2.12) depend on the relative 
velocity w ,  and the volume integrals for p and q to be given shortly must also involve 
integrals over the Maxwellian (2.3). As this second integration is straightforward, 
and merely produces the appropriate coefficients for various terms in the theory, to 
simplify the appearance of our formulae we shall indicate it by a bar over the volume 
integral sign; and we shall omit further reference to the w dependence and its elimina- 
tion by integration, save where the consequences are not immediately obvious. 

The molecular momentum at the target nC is mu, and, provided there are no solid 
boundaries in the fluid, the integral of mu, dN; over the fluid volume 7 is the rate a t  

20-2 
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which momentum is transferred across nX. By definition this is also n.  p, hence by 
(2.21) and (2.22) - * 

p = Pu, U, 8 , d V ;  J v  (2.24) 

the influence of solid boundaries on (2.24) will be described shortly. 

molecules, p = + trace p, i.e. 
Since the trace of the viscous stress tensor, 7c = p - p i ,  is zero for monatomic 

p = -  j i ~ ; 8 , d V  
(2.25) 1 : IV 

and x = JvpuIul 8, dV (u,"u, = u, u1 - +u; 1 ) 

For monatomic molecules the energy transferred from P' to Q per molecule is the 
difference between the energy *mu% actually arriving a t  Q and the local value of the 
kinematic energy at  Q, namely &mC%. It follows that the integral of &m(u; - C%) d N i  
over the fluid volume gives n .  q, where q is the heat flux vector. Hence by (2.21) 

q = - p(u; - Cl) u2 P2 av. (2.26) 

As the volume integral of iju2 8, is not zero, we cannot replace the integral in (2.26) 
by pui u2 8,, despite the fact that this would appear to be in accord with standard 
kinetic energy. For this latter theorythere is no problem, sinceq = & p z 2  = &pc(c2 - C;), 
C being zero, but this applies at  a single point in space. The physical meaning of q is 
that it is the net energy transferred; hence the form given in (2.26). A related point 
is that Jeans's (1921) model of heat transport, an improved version of Meyer's much 
earlier mean-free-path treatment, failed, not because, as he suggests, his model did 
not give zero mass flux a t  the target, but simply because of his gross underestimate 
of the influence of the persistence of velocity on the flux of molecular energy. 

Finally note that in order to calculate p and q we need to know the fluid velocity 
v, density p and (for Ci) the temperature T at all points in the flow field. Thus (2.24) 
and (2.26) taken with the basic conservation laws, 

:: Jv 

and 
0 

dP dv 
dt dt -++V.V = 0, p - + V . p  = pF, 

d T  
at p c , - + p v . v + p : v v + v . q  = 0, 

(2.27) 

are integro-differential equations for V, p and T, of which the Navier-Stokes equations 
and the Burnett equations are special cases. These are the equations of our generalized 
fluid dynamics. Boltzmann's equation is non-local in velocity space, our equations are 
non-local in rea.1 space, a feature that somewhat complicates each approach. It is 
not obvious at  this stage whether the models are equally intractable ; however, where 
fluid variables only are required, our approach does have the merit of suppressing 
unwanted kinetic details. It should also be noted that Boltzmann's equation evades 
being non-local in real space only by virtue of approximations we have not required, 
approximations involving the range of the interparticle potential and the distance 
of boundary surfaces. 



Transport processes in dilute gases 597 

2.7. Boundary conditions 
The interaction between a gas and a solid surface is a very complicated phenomenon, 
and we do not propose here to give more than a brief account of the simplest method 
of dealing with boundary conditions in our generalized fluid dynamics. Cercignani's 
(1975) text contains a useful survey of the problem for classical kinetic theory, but 
of course if we had to resort to this theory to cope with boundary conditions, the 
mean-free-path approach developed above would be somewhat undermined. 

We shall consider only the two limiting cases of diffuse and specular reflexion. First 
with specular reflexion molecules will retain perfectly their various transport prop- 
erties after reflexion and the theory needs merely to cope with the geometric problem 
that boundaries introduce by abruptly altering the trajectories. The use of image 
sources suggests itself, especially with plane boundaries, and the theory presented 
above is very little altered. 

Diffuse reflexion is a little more complicated. Let the point &" lie on a boundary a t  
the point r", t" and let p", T" denote the density and temperature a t  Q", assumed 
pro tempore to be known. The molecular velocity of molecules leaving &" and arriving 
a t  a point Q in the fluid is 

vi = w6i c; R + p; 7; 9; + V l  - v+I t jFd t  (i = 1, 2), (2.28) 

in a notation obvious by comparison with (2.23). Here V" is the wall velocity and the 
value of C; can be deduced from TI'. Suppose that the surface element dA" a t  Q" 
emits molecules isotropically, then we can generalize (2.24) to 

where any regions in V and A hidden from Q must be omitted from the integration 
domains. A similar formula for q has the subscript 1 replaced by 2, and &(ui - (2:) u,, 
i(Vi - Ci) V, replacing u, u, and V, V, in the integrands. By taking Q to lie on the wall 
itself we can obtain expressions for p" and q', and from these values and the nature 
of the wall we can deduce p" and T", thus closing the system of equations. 

This is admittedly an incomplete account of boundary conditions, but, one hopes, 
adequate to show how they could be incorporated in our generalized fluid dynamics. 

3. Derivation of the Burnett equations 
3.1. Expansions in powers of the Knudsen number 

I n  order to obtain formulae for p and q similar in form to those deduced by Burnett 
(1935) from the Chapman-Enskog theory, and thereby to test our theory, we shall 
develop expansions for the integrals given in 3 2.6 for p and q,  retaining terms O(K2),  
where for a given macroscopic variable #(r, t ) ,  K is the Knudsen number 
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h being the appropriate mean free path. For time rates of change the number corres- 
ponding to K is 7, = ~(dq5/dt)/q5, where T is the free time. The numbers K and T, 

will be assumed to be similar in magnitude, so that O(K2) can be used to indicate 
terms O(T;), O(T, K) as well as O(K2) .  

Our first task is to find the expansion for the molecular velocity ui given by (2.23). 
We shall omit the subscript i denoting the transport property until required, and also 
further simplify matters by omitting the factor wSi accompanying Ci. Later we shall 
find that restoring wSi and then averaging over w makes small changes to only two 
O ( K 2 )  coefficients, which indicates that just two thermal speeds (Cl, C,) provide a good 
description even to O(K2). However for K > 1, the thermal spread of molecular 
velocities is very important, as we shall establish in a later paper. Thus (see (2.15)) 
we write h in place of hi, and simplify (2.23) to 

I t :  (3.1) 
1 

P 
u = C’k++‘7’9’++’7’, (Ox) ’ :  f i f i+v’ -v+ Fdt .  

Next we assume that 

Iv’-v//C = O(K), 1 9 / 7 / C  = O(K),  IF17/C = O(K). (3.2) 

q5’ = #(I  + O ( K ) ) ;  and /?‘ = 1 + O(K), fi&: x = O(K), (3.3) 

We shall find that, for any variable $(r, t ) ,  

SO that after division by C, the first right-hand term in (3.1) is O(1) and the rest O(K) .  
Notice that (3.33) constrains the theory to weak shocks, and furthermore, since 

the hypothesis Iv‘-vl/C = ( ~ - ~ / v ’ - v l ) ~ / C  = O ( l ) ,  would require 1917/C also to be 
O( l ) ,  there is no alternative to (3.2) allowing the possibility of an expansion in powers 
of K that would avoid this constraint on shock wave strength. In  other words all 
expansions in powers of K are valid only if K < 1 and, if just a few terms are retained, 
accuracy requires that K 4 1. The natural scales in the sequel are h and 7 and terms 
of rth degree in A, 7 and their products are O(Kr) .  

An important parameter in expansions in powers of K is the transit time T = t - t‘ 
of a typical molecule moving from P‘ to Q .  By (2.5) 

Fu-ap = -Fu+(au-a,)  = -Fq+0(T),  

since the difference in fluid accelerations will be proportional to the distance and 
hence to the transit time ( t U - - t ’ ) ,  which has T as its upper bound. Hence (2.7), (2.11) 
and (3.3) yield the expansions 

r = r‘ + Tu‘ + &T2 F’ + O(T3) (3.4) 
h 

and 

The scalar products of the latter expansion with 6 and k lead to 

R& = r - E = T(C’R + 79) - +T2S + O(K3) + O(T3). 

T = X ~ ( C / C ’ ) { ~ + ~ ( + X -  I ) R . ~ / c } + o ( ~ ’ ~ ) + o ( T ~ ) ,  (3.5) 
& = ii + 7(  1 - 4x1 (9 - iiii .F)/c + o ( ~ 3 )  + o(T~),  and 

where we have introduced the non-dimensional distance 
(3.6) 

x R/A = R/TC.  (3.7) 
By (3 .3)  C ‘ / C  = 1 +O(K) ,  so T = xO(T) = xO(K).  It is true that 0 < 5 < 00, but as all 
the expansions given below will subsequently be multiplied by a factor ecZ coming 
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from B in (2.12), we can freely omit powers of x from the error terms, and write the 
error terms in (3.5) and (3.6) as O(K3)  alone. 

The volume integrals for p and q will reduce to integrals of the type (see (2.12) and 

0 

Here 1 is the unit tensor and K is a fourth-order tensor (see Woods, 1975, p. 189) with 
the property of generating the deviator A of any second-order tensor A, K: A = A. 
Note from (3.8) that integrals containing (1  - x )  and ( x -$x2)  in the integrands will 
vanish, for which reason we find that the terms involving 5 in (3.5) and (3.6) make no 
contributions to the final results. (The vector & only occurs as x&). 

0 0 0 

3.2. Expansion for the molecular velocity 

$(r’, t’) = $’ = $-Tdq5/6T+gT2d2$/dT2+O(K3), 

For any function $(r, t ) ,  

the right-side being evaluated a t  r, t. Hence by (2.8), (3.3), (3.4) and T = t-t’, 

where u‘ = cfa+V’-V+T9+O(K2), 

and V and dldt denote the gradient and material derivative at Q. As described at the 
end of 8 3.1 we can write (3.5) as 

T = ~ ( c / c I )  + o ( K ~ ) ,  (3.10) 

without committing an error in our final results. 
Particular cases of (3.9) are 

v’-v = -z(AkVv+m)+O(K2), (3.11) 

and (3.12) 

where we have used Ccc T i  in the second expansion. 
Equations (3.10) to (3.12) enable us to h t e  (3.9) as 

2T dt dt 
h dq5 h 4’ = 4 - xAR .V$ - XT - + x 2 7 h R .  VV . Vq5 - at 

+ +x2 r2a. Vq5 + ( $x2 - x) 7 2 9 .  Vq5 + x2$ + . . . , 
where 

= SA2k i i :  VV$+TA ( ~ . v - - f i . v v . v $  2 ) + * 7 2  (;; -- a m ) .  
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Hence, omitting terms containing (&x2 - x) as described at the end of 8 3.1, we arrive 
a t  the expansion 

~ 

dt 2T 
A 4' z= $-xAR.V#-XT--- 

d24 
at2 

+ ~ ~ r A f i . V - + & x ~ A ~ k f i : V V q 5 + + ~ % ~  a4 -+.... (3.13) 
at 

TO deal with the integral in (3.1), we shall apply (3.13) to F, shortening the distance 
x to X( 1 - s /R) ,  5 being distance measured along the molecular trajectory (see figure 1). 
This amounts to linear interpolation. Thus 

and similarly from (3.10) and (3.12) 

xs t, = 

(3.14) 

(3.15) 

Hence 

Adding this to the case q5 = v of (3.13) we get 
A 

a 9  A h  

A 

vf - v +It: F,dt, = - xAR. Vv- xrF - 

+ B ~ ~ r h k .  V.F  + g x 2 r 2 -  + *x2 RR : VVV + . . . . (3.16) at 
Correct to O(K), equations (3.3), (3.12) and (3.16) enable us to write (3.1) as 

u = -xAf i .Vv+~(1-~)9+O(K2) .  (3.17) 

Then with the help of the expressions for 8, and p given below in (3.30) and (3.33), 
this expansion substituted into (2.24) and (2.26) enables us to calculate p and q 
correct to O ( K ) ,  which in turn allows us to find the expansion for u correct to O(K2) .  
We shall be giving both the O(K) and O(K2) calculations of p and q below, so for 
brevity here we will merely quote the results of the first iteration required to proceed 
to the second. These are 

(3.18) 

P = if'c?, P = SpClA = P71, K = ~C,PL, (3.19) 

1 1 1 1 

P P P P  
A r- - --V.p = --Vp+O(K) = --Vp+-T.(2pV~)+O(K2), 

@/at = - ~ V . V ,  dpldt = -;pV.v+O(K), dTldt = -$TV.v+O(K), (3.20) 

(3.21) 

Equations (3.12) and (3.21) follow from the adiabatic relations, pcc T*, etc., which 
are exact when ,u and K are zero. In  (3.19) 6 has the value g ,  but as we plan to prove 
this from our mean-free-path theory, independently of table 1, we make no commit- 
ment about its value at this stage. 
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First consider the term r'/3'9' in (3.1). By (2.17) and Tcc C2, we get 

601 

d ( n d  d T  dC 
- = ( d - l ) - = 2 ( d - l ) - .  nr T C 

However this is not correct for our purpose of calculating the change between 7(  r', t') 
and r(r, t )  experienced by a typical molecule S as it moves with constant velocity 
(correct to O(K))  along its path. Thus one of the Cs in T cc CC must be held constant, 
which reduces the coefficient of dC/C by unity. If in addition we eliminate n by 
ncc Th+ O(K)  [cf. (3.20)], we arrive at 

I E), = ( d - 2 ) F + O ( K ) .  d T  

i Similarly, for A = rC and ,u = pr,  

and 
By (3.13) and (3.23a),  

(dA/h) ,  = (d - 3) d T / T  + O(Kn),  

(d,u/,u), = (4 + 4) W T  + own). 

(3.22) 

(3.23) 

The theory of the factor /3' is given in $2.4. We can use (3.17) to write down an 
expansion for ii'. Since P" is one mean free path from P', x is unity in the present 
application. Thus 

where the vector fir is to be averaged over the hemisphere y .  The averages of fi' and 
k'k' are 4% and 41 ; by ( 3 . 2 0 ~ ) :  

3 1 dT 
2 T  dt ~ : V V = V . V = - - - - + O ( K ) ,  

hence by (2.20) 

(3.24) 
A h  

4T 
/3' = 1--R.VT+O(K2) .  

An application of (3.13) to 9 gives 

9' = 9 - x(Afi .  V 9  + r d 9 / d t )  + O(K2).  (3.25) 

Also (3.3), (3.18) and ( 3 . 2 2 ~ )  yield 

(3.26) 
P P 

FinalIy substituting (3.16), (3.23) to  (3.26) into (3.1), and ignoring terms containing 
(#x2 -x )  as justified at  the end of 9 3.1, we arrive at 

T 
1 A h  p'7'-;(vx)': RR = -- 

T 
A h 

u = C ' R - x A R . V v + ~ ( i - x ) 9 - ~ 9  [ ~ ( d - 2 ) + 4 ~ 2 ] -  
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where from C 2 x  T and (3.15) 

+ ...} 

~ 2 7 ~ d T  A ~ & . V T + T -  --- A R . V T + T ~  ?) 2T2 dt ( 
+T 

3.3. Expansion of the transit probability and fluid density 
The number defined in 12.12). namelv 

will be expanded in the form 

9 = 90(1+a,+92+ ...},\ 

where 
e-" 

4nR2h ' 9,3 - 

(3.28) 

(3.29) 

(3.30) 

and 9, is O(Kr). Since the integrals of 9 and go over the whole fluid volume are both 
unity (see (2.14)) 

[ v909 , .d i j  = 0, r = 1 , 2 ,  ..., (3.31) 

and in a theory correct to O(K2) this has the fortunate consequence that the numbers 
a,, a,, . .. are not required. Incidentally the zeros in (3.31) occur in fact because of the 
appearance of factors (&x2 - x), (+x3 - &x2), . . . in a,, a,, . . . . 

To evaluate the integral in (3.29) we adopt the expansion 

1 A, = :( 1 +; (1 -3 (d -#I (nfi. V T  

which follows from (3.323) and linear interpolation as used in (3.14). Then 

(d -$ )  
X 2  exp [ -IOR  as/^^] = e-z { 1 - 2 

whence 9 = Yo (3.32) 

= p(P, t )  in terms of p(r, t ) .  From figure 1 and Finally we need an expression for 
(3.6) it follows that 

A A A  

f = r-R& = r-xAR+hT(+x2-x)(S-RR.9)/C+ ..., 
in which the term involving (4x2-x) can be omitted; thus 

A p = p - xhR . V p  + &x2 h2 && : VVp + O(K3) .  

3.4. The pressure tensor 
From (2.24) this tensor is (omitting integration over w )  

(3.33) 

(3.34) 



Transport processes in dilute gases 603 

where the quantities in the integrand appear in (3.27), (3.28), (3.32) and (3.33). The 
algebra that follows is straightforward, all integrals being of the type given in (3.8). 
We shall set out the integrand for the fist-order theory only. We have, on dropping 
a term involving (1 - x), 

p = pG'2,1T, { [ 1 - (Al 2. V T  + r1 fifi-m1(fifi. V V +  VV. RR) 
dt - 

where the tilde denotes the transpose of a dyad. Thus, correct to O(K), 
p = Qpcq{l(l+ $T1 v. v) - T1(VV + VY)}, 

or p = p1 + x ,  where (cf. (3.19)) 

p = Qpq,  x = - 2&, p = pTl  = gpc;T1 = i p c ,  A,. (3.35) 

Correct to O(K2)  our theory gives 

A 2  N + (d - #) 2 V T  . V T  + (d + 4) 3 Vp . V T  + 3 ~ f  V . a + $7; Vv : Vv) 
3T2 3PT 

This may be simplified with the aid of (3.21), which enables us to write 

VVQ - 3 V V T  3 V p V T  - +-- + O(K);  p 2 T 10 pT (3.37) 

(3.38) 
d 

also -(Vv) = Va-Vv.Vv at 

yields Va  = - (Vv) + Vv. Vv. 

Then by (3.20), further use of (3.21) and ph2, = p1C; = 3p7, kTlm, which follows 
from (3.19), the second part of (3.36) yields 

o d o  0 

at 

0 

x = - ~ , L L V V + ~ T ~ E ,  
where 

0 

d o  k" k A  E = g(1- 26) V .v&+ 2- (Vv) + 2Vv:Vv+ 2%. Vv+ 3- V V T  + 34- VTVT.  
at m mT 

(3.39) 
Burnett's (1935) theory leads to (e.g. see Ferziger & Kaper, 1972, p. 148) 

0 k" 0 0  

- V p V T  + m5 - V T V T  +- GT, VV. VV + (3.40) 
ml, ??LT 
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For Maxwellian molecules Burnett gives the values 

wl= $ ( - $ - A ) ,  w 2 =  2,  a3= 3, w 4 =  0, a,= 36, W e =  8 

and it is easily shown that with these values (3.39) and (3 .40)  are identical. For other 
molecular forces Burnett and others have found values for wi, i = 1, ..., 6, only 
slightly different from those given above. Our theory could be readily generalized as 
indicated in 3 2.3. 

Now r1 is independent of w for a Maxwellian gas, so had we retained wSl in the 
theory, i.e. allowed for thermal spread in the molecular speeds, the only effect would 
have been to replace h2, in (3.36) by the average %= wS2,h2, and, as (2 .2 )  and (2.4) 
show this to be A:, our procedure is justified. 

In the following section we shall show that the coefficient of 1 in (3.36) reduces 
to p ,  which means that the trace of x is zero. Alternatively we can argue that 
trace x = $ must be zero for physical reasons, and use the coefficient of 1 in (3.36) 
as an equation to determine the value of 8 in (3.19). 

3.5. Trace ofthe viscous tensor 
In  a tenuous gas it is well known that the bulk viscosity is zero, save that in certain 
circumstances an effective bulk viscosity due to relaxation effects can arise (e.g. see 
Woods, 1975; Clarke & McChesney, 1976). But in a simple monatomic gas, which 
has no internal molecular energy and hence no associated relaxation times, the bulk 
viscosity is certainly zero; and this means that & is zero. By (3.36) 

To deal with the first term on the right-hand side of (3.41) we use the energy con- 
servation equation (2.27), namely 

0 

(3.42) 
d T  
at p c , - + p v . v + x : v v + v . q  = 0, 

0 

since 1 : A = 0. Anticipating the Fourier law ( 3  3.6) 

q = - K v T + o ( K ~ )  (K  = e C v p ) , *  

and using (3 .35b)  we can write (3 .42)  in the form 

By (3 .21)  and the trace of (3.37) 

V 2 T  V2p 5 V 2 T  3 V p . V T  5 V p . V T  3 V p . V T  +-- T p 2 T I0  pT 2p pT 10 pT ' 
-+- =--+--- - - - V . ( , U V T ) - ~ -  

since by (2.17) and (2.19) pcc T". Equation ( 3 . 2 0 ~ )  and the trace of (3 .38)  yield 

= - g r i V .  a + $T?VV : V v  + o(~3) .  
- Tf{d2T 

1 02) T dtz T dt 
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We substitute these values into (3.41) and, by using (3.20~)  and noting from (3.35) 
that h,/p = 37,/p, we arrive finally a t  the conclusion that, correct to O(K2), 

k 6 = (f-0) ~ - T ~ V . ( , U V T ) .  
rn 

But as must be zero for the physical reason described earlier, we conclude that 0 = $, 
a result achieved completely by mean-free-path arguments, and without reference to 
‘persistence of velocities ’ for energy transport. Previous mean-free-path treatments, 
confined to O ( K )  accuracy, have not obtained values for 8 much larger than Q. 

3.6. The heat Jlux vector 
Our general formula for the heat flux vector is (2.26): 

From (3.27), (3.28) and 

(3.43) 

A h  A h  0 0 1 dT 
2T dt RR:VV = RR:Vv+QV.v = RR:Vv-- -+O(K), 

we obtain for ui - 6’; the expansion 

r2h2 dT S +xu[ii.~E)-F;it~.~~ 1 dTA -2x(J-g)--~.-  1 T at c; 2T 
A A A  + 3(x2 - x) T~ A, fi . VV . 2F/CE + T~ A, RRR i [x2 - g)Vfv 

+ (x2 - q(3 + &))‘&VT/T] + . . .}, (3.44) 

where g = 4,U/(pC2h2). This is to be multiplied by the expansion for u2, and had we 
retained the factors wSi (see (2.28)), then averaged ( u ~ - C ~ ) u z  over w ,  the effect 
would be to replace g in (3.44) by 

in which calculation we have used (2.2), (2.4) and (3.35). The approximation here 
introduces an error of less than 1 %. As we shall see later the exact value of the co- 
efficient in question is g; without averaging we get g = g x 1.017, which is still very 
close. 

The other term affected by averaging over o is the one containing 3. In  this case 
(again anticipating the multiplication by u2) 2r2 h 2 9 / C ;  is replaced by the average 
of 2(wS2) 7 2 ( W 8 2  A2)S/Ci) .  Since 

thisaveragereducesto -ar,A,VT/T+O(K),witha= 1. Without averaginga= 1.291; 
the exact value of a is 9. The error our value of a = 1 produces will be indicated 
shortly. 
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Substituting (3.44), (3.32) and (3.33) into (3.43), using 

V (g) = dt ( V T )  + V v .  V T ,  d 

(3.2), the integrals in (3.8) and the averages just described, we obtain 

pc3 h 1 d T  
6T 6T dt T dt 

q = -- 2 ~vT+P=~ [g (VT)  - vv. VT + (4-4)- - VT 

1 . (3.45) 
15 P 

From the first term in (3.45) we obtain K = &pC;r,, as stated in equation (2.19). By 
( 3 . 2 0 ~ )  our result can be written 

2 
q = - K v T + ~ Q ,  

PT 
where 

T O  0 Q = B,V.vVT-t8 Vv.Vp+8,TV.V;+t&Vv.VT, 

with 8, = yqg - d), e 2 - *5 - 8-2 e 3 - - 3 ,  - 0 , = 3  

and 

In this calculation we have used 

O6 = 3 (?+.). 

Were 37.5 in 8, replaced by 35, our results would agree entirely with Burnett's 
expression for q for Maxwellian molecules. This error and the much smaller error in 

removed above are unimportant considering both the simplicity of our model and 
its much greater generality than possible with the Chapman-Enskog series develop- 
ment. 

4. Concluding remarks 
We remind the reader that our purpose has not been yet another approach to the 

Burnett equations; it has been to construct a theory of fluid dynamics valid for all 
K values, and then to use Burnett's results as a first check on this theory 'at small 
values of K .  As remarked in the introduction, tests of the theory at  K M 1 and higher 
are important; these will be provided in later papers. Another important development, 
partially completed, is the extension of the expressions for p and q to molecules 
possessing internal energy. And boundary conditions certainly need further con- 
sideration. 

Because mean-free-path arguments are independent of having accurate kinetic 
equations for velocity distribution functions, they may have some future in turbulent 
plasmas, where the effect of micro-instabilities is mainly to alter the collision times. 
Admittedly phenomenological in spirit, but perhaps such methods are the best that 
can be achieved at this stage in the development of plasma theory. 
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For a theory correct only to O ( K )  one must accept that mean-free-path arguments 
are inferior to exact kinetic equation treatments, but at higher powers of K the math- 
ematics of the exact theory not only becomes troublesome, but also largely confounds 
the objective by severely constraining the K range. 

This work was commenced during a leave period spent in the Mathematics Depart- 
ment of the University of British Columbia, Vancouver, in 1976-7, arranged by 
Professor F. Wan, and completed later a t  theN.S.W. Instituteof TechnologyinSydney. 
I have had the benefit of many discussions on details of the work with Dr H. Troughton 
of the Mathematical Institute, Oxford University, and Dr M. Wallis, also of the 
Institute, has been a helpful listener. 

Finally I am grateful to Prof. T. G. Cowling for critical comments on a first version 
of the work, which led me to make significant changes. 
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